Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 373, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714965

RESUMO

BACKGROUND: As one of the world's most important beverage crops, tea plants (Camellia sinensis) are renowned for their unique flavors and numerous beneficial secondary metabolites, attracting researchers to investigate the formation of tea quality. With the increasing availability of transcriptome data on tea plants in public databases, conducting large-scale co-expression analyses has become feasible to meet the demand for functional characterization of tea plant genes. However, as the multidimensional noise increases, larger-scale co-expression analyses are not always effective. Analyzing a subset of samples generated by effectively downsampling and reorganizing the global sample set often leads to more accurate results in co-expression analysis. Meanwhile, global-based co-expression analyses are more likely to overlook condition-specific gene interactions, which may be more important and worthy of exploration and research. RESULTS: Here, we employed the k-means clustering method to organize and classify the global samples of tea plants, resulting in clustered samples. Metadata annotations were then performed on these clustered samples to determine the "conditions" represented by each cluster. Subsequently, we conducted gene co-expression network analysis (WGCNA) separately on the global samples and the clustered samples, resulting in global modules and cluster-specific modules. Comparative analyses of global modules and cluster-specific modules have demonstrated that cluster-specific modules exhibit higher accuracy in co-expression analysis. To measure the degree of condition specificity of genes within condition-specific clusters, we introduced the correlation difference value (CDV). By incorporating the CDV into co-expression analyses, we can assess the condition specificity of genes. This approach proved instrumental in identifying a series of high CDV transcription factor encoding genes upregulated during sustained cold treatment in Camellia sinensis leaves and buds, and pinpointing a pair of genes that participate in the antioxidant defense system of tea plants under sustained cold stress. CONCLUSIONS: To summarize, downsampling and reorganizing the sample set improved the accuracy of co-expression analysis. Cluster-specific modules were more accurate in capturing condition-specific gene interactions. The introduction of CDV allowed for the assessment of condition specificity in gene co-expression analyses. Using this approach, we identified a series of high CDV transcription factor encoding genes related to sustained cold stress in Camellia sinensis. This study highlights the importance of considering condition specificity in co-expression analysis and provides insights into the regulation of the cold stress in Camellia sinensis.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Análise por Conglomerados , Genes de Plantas , Perfilação da Expressão Gênica/métodos , Mineração de Dados/métodos , Transcriptoma , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes
2.
Front Plant Sci ; 14: 1205725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771487

RESUMO

Antibacterial resistance poses a significant global threat, necessitating the discovery of new therapeutic agents. Plants are a valuable source of secondary metabolites with demonstrated anticancer and antibacterial properties. In this study, we reveal that Melastoma dodecandrum exhibits both bacteriostatic and bactericidal effects against Pseudomonas aeruginosa and Staphylococcus aureus. Treatment with plant extracts results in membrane damage and a reduction in P.aeruginosa swimming and swarming motility. A comparative analysis of bacterial transcriptomes exposed to M.dodecandrum extracts and four distinct antibiotics indicates that the extracts may trigger similar transcriptomic responses as triclosan, a fatty acid synthesis inhibitor. Activity-guided fractionation suggests that the antibacterial activity is not attributable to hydrolyzable tannins, but to unidentified minor compounds. Additionally, we identified 104 specialized metabolic pathways and demonstrated a high level of transcriptional coordination between these biosynthetic pathways and phytohormones, highlighting potential regulatory mechanisms of antibacterial metabolites in M.dodecandrum.

3.
Comput Struct Biotechnol J ; 21: 1639-1650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874159

RESUMO

The immense structural diversity of products and intermediates of plant specialized metabolism (specialized metabolites) makes them rich sources of therapeutic medicine, nutrients, and other useful materials. With the rapid accumulation of reactome data that can be accessible on biological and chemical databases, along with recent advances in machine learning, this review sets out to outline how supervised machine learning can be used to design new compounds and pathways by exploiting the wealth of said data. We will first examine the various sources from which reactome data can be obtained, followed by explaining the different machine learning encoding methods for reactome data. We then discuss current supervised machine learning developments that can be employed in various aspects to help redesign plant specialized metabolism.

4.
Nat Commun ; 14(1): 986, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813788

RESUMO

Abiotic stresses negatively impact ecosystems and the yield of crops, and climate change will increase their frequency and intensity. Despite progress in understanding how plants respond to individual stresses, our knowledge of plant acclimatization to combined stresses typically occurring in nature is still lacking. Here, we used a plant with minimal regulatory network redundancy, Marchantia polymorpha, to study how seven abiotic stresses, alone and in 19 pairwise combinations, affect the phenotype, gene expression, and activity of cellular pathways. While the transcriptomic responses show a conserved differential gene expression between Arabidopsis and Marchantia, we also observe a strong functional and transcriptional divergence between the two species. The reconstructed high-confidence gene regulatory network demonstrates that the response to specific stresses dominates those of others by relying on a large ensemble of transcription factors. We also show that a regression model could accurately predict the gene expression under combined stresses, indicating that Marchantia performs arithmetic multiplication to respond to multiple stresses. Lastly, two online resources ( https://conekt.plant.tools and http://bar.utoronto.ca/efp_marchantia/cgi-bin/efpWeb.cgi ) are provided to facilitate the study of gene expression in Marchantia exposed to abiotic stresses.


Assuntos
Marchantia , Marchantia/metabolismo , Ecossistema , Plantas/genética , Transcriptoma , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
5.
Plant Commun ; 3(4): 100323, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35605200

RESUMO

There are now more than 300 000 RNA sequencing samples available, stemming from thousands of experiments capturing gene expression in organs, tissues, developmental stages, and experimental treatments for hundreds of plant species. The expression data have great value, as they can be re-analyzed by others to ask and answer questions that go beyond the aims of the study that generated the data. Because gene expression provides essential clues to where and when a gene is active, the data provide powerful tools for predicting gene function, and comparative analyses allow us to study plant evolution from a new perspective. This review describes how we can gain new knowledge from gene expression profiles, expression specificities, co-expression networks, differential gene expression, and experiment correlation. We also introduce and demonstrate databases that provide user-friendly access to these tools.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Plantas/genética , Plantas/metabolismo , Análise de Sequência de RNA , Transcriptoma/genética
6.
J Mol Biol ; 434(11): 167502, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35389344

RESUMO

During the last few decades, the study of microbial ecology has been enabled by molecular and genomic data. DNA sequencing has revealed the surprising extent of microbial diversity and how microbial processes run global ecosystems. However, significant gaps in our understanding of the microbial world remain, and one example is that microbial eukaryotes, or protists, are still largely neglected. To address this gap, we used gene expression data from 17 protist species to create protist.guru: an online database equipped with tools for identifying co-expressed genes, gene families, and co-expression clusters enriched for specific biological functions. Here, we show how our database can be used to reveal genes involved in essential pathways, such as the synthesis of secondary carotenoids in Haematococcus lacustris. We expect protist.guru to serve as a valuable resource for protistologists, as well as a catalyst for discoveries and new insights into the biological processes of microbial eukaryotes. AVAILABILITY: The database and co-expression networks are freely available from http://protist.guru/. The expression matrices and sample annotations are found in the supplementary data.


Assuntos
Bases de Dados Genéticas , Eucariotos , Transcriptoma , Eucariotos/genética , Perfilação da Expressão Gênica , Análise de Sequência de DNA , Transcriptoma/genética
7.
J Mol Biol ; 434(11): 167380, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34838806

RESUMO

While bacteria can be beneficial to our health, their deadly pathogenic potential has been an ever-present concern exacerbated by the emergence of drug-resistant strains. As such, there is a pressing urgency for an enhanced understanding of their gene function and regulation, which could mediate the development of novel antimicrobials. Transcriptomic analyses have been established as insightful and indispensable to the functional characterization of genes and identification of new biological pathways, but in the context of bacterial studies, they remain limited to species-specific datasets. To address this, we integrated the genomic and transcriptomic data of the 17 most notorious and researched bacterial pathogens, creating bacteria.guru, an interactive database that can identify, visualize, and compare gene expression profiles, coexpression networks, functionally enriched clusters, and gene families across species. Through illustrating antibiotic resistance mechanisms in P. aeruginosa, we demonstrate that bacteria.guru could potentially aid in discovering multi-faceted antibiotic targets and, overall, facilitate future bacterial research. AVAILABILITY: The database and coexpression networks are freely available from https://bacteria.guru/. Sample annotations can be found in the supplemental data.


Assuntos
Bactérias , Bases de Dados Genéticas , Farmacorresistência Bacteriana , Perfilação da Expressão Gênica , Uso da Internet , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...